Spectral Clustering(谱聚类)
Abstract
This article isn't finished yet...
Graph Partitioning
Bi-partitioning task
Minmal-cut¶
Normalized-cut¶
Criterion: Normalized-cut [Shi-Malik, '97]
Define: Connectivity between groups relative to the density of each group
\(vol(\mathbf{A})\) : total weight of the edges with at least one endpoint in \(\mathbf{A}\) :
The purpose of this criterion is to produce more balanced partitions.
Spectral Graph Theory:
Analyze the "spectrum" of matrix(s) representing \(G\)
Spectrum: Eigenvectors \(x_i\) of a graph, ordered by the magnitude(strength) of their corresponding eigenvalues \(\lambda_i\) :
Abstract
\(d\)-regular : the degree of each vertex in the graph is \(d\)
If \(G\) is not connected, for example, \(G\) has 2 components, each \(d\)-regular.
Abstract
每一个特征向量表现了图的划分方式
What are some eigenvectors?
Spectral Partitioning Algorithm¶
算法流程¶
Pre-processing¶
根据图构建拉普拉斯矩阵 \(L\)。
Decomposition¶
*分解
求 \(L\) 的第 2 小的特征值 \(\lambda_1\) (\(\lambda_0=0\)) 和特征向量 \(\vec{q_1}\)。
Grouping¶
\(n\) 维向量 \(\vec{q_1}\) 的 \(n\) 个参数对应到 \(n\) 个顶点,可以画图,将参数作为纵坐标,顶点标号作为横坐标,结合图像进行分组(grouping)