Skip to content

Spectral Clustering(谱聚类)

Abstract

This article isn't finished yet...

Graph Partitioning

Bi-partitioning task

Minmal-cut

Normalized-cut

Criterion: Normalized-cut [Shi-Malik, '97]

Define: Connectivity between groups relative to the density of each group

\[ ncut(\mathbf{A},\mathbf{B})=\frac{cut(\mathbf{A},\mathbf{B})}{vol(\mathbf{A})}+\frac{cut(\mathbf{A},\mathbf{B})}{vol(\mathbf{B})} \]

\(vol(\mathbf{A})\) : total weight of the edges with at least one endpoint in \(\mathbf{A}\) :

\[ vol(\mathbf{A})=\sum_{i\in\mathbf{A}}k_i \]

The purpose of this criterion is to produce more balanced partitions.

Spectral Graph Theory:

Analyze the "spectrum" of matrix(s) representing \(G\)

Spectrum: Eigenvectors \(x_i\) of a graph, ordered by the magnitude(strength) of their corresponding eigenvalues \(\lambda_i\) :

\[ \Lambda=\{\lambda_1,\lambda_2,\cdots,\lambda_n\}\\ \lambda_1\leq\lambda_2\leq\cdots\leq\lambda_n \]

Abstract

\(d\)-regular : the degree of each vertex in the graph is \(d\)

If \(G\) is not connected, for example, \(G\) has 2 components, each \(d\)-regular.

Abstract

每一个特征向量表现了图的划分方式

What are some eigenvectors?

Spectral Partitioning Algorithm

算法流程

Pre-processing

根据图构建拉普拉斯矩阵 \(L\)

Decomposition

*分解

\(L\) 的第 2 小的特征值 \(\lambda_1\) (\(\lambda_0=0\)) 和特征向量 \(\vec{q_1}\)

Grouping

\(n\) 维向量 \(\vec{q_1}\)\(n\) 个参数对应到 \(n\) 个顶点,可以画图,将参数作为纵坐标,顶点标号作为横坐标,结合图像进行分组(grouping)